

Objectives
  Provide Policies

  For effective resource usage

  Provide Analysis

–  For predicting system behaviour

–  Simulation, scheduling analysis, measurement, model checking

  Provide Models

–  For composing systems

–  Time triggered and event-triggered work flow

–  For static and dynamic usage patterns

Challenges

  To move from single processor platforms to multiprocessor,
multi-core, FPGA, etc.

  To integrate various resources and abstract views of the
overall system

–  Integrate policies
–  Integrate analysis
–  Integrate models

  Static and Dynamic, peer-to-peer and hierarchical

Outputs

  In four years, ArtistDesign partners have produced

  92 “Technical Achievements”

  Over 400 refereed papers

  Including a major review of multiprocessor scheduling published in ACM
Computer Surveys (2011)

Results

  Significant work still on single processor systems, for
example

  Efficient analysis for EDF

  Energy and power aware scheduling

  Sensitivity analysis and sustainable analysis

  Parameters selection for control systems

  Limited preemptions

  Optimality results

Results

  Language and other standards work

  Much work on contract-based (virtualisation) means of
integrating components

–  Recently extended to mixed criticality systems

  Hierarchical scheduling of various forms

  Distributed Systems

  Multiprocessor scheduling

Multiprocessor Scheduling
  For globally allocations:

  Better priority assignment (Deadline Monotonic is far from optimal)

  For EDF and Fixed Pri – schemes that switch to least laxity at some
point (eg. EDZL, FPZL)

  Better scheduling tests for Fixed Pri – though some not compatible
with optimal priority assignment

  No optimal scheme for sporadic task sets (without clairvoyance),

  Overheads – Good News (migration = preemption), Bad
News (shared queues etc prohibitive for N > 6)

Multiprocessor Scheduling

  For fully partitioned we still have the 50% bound, but

  For systems of small tasks, schemes such as first-fit on density work
well (largest density first)

  Semi-partitioned approaches are proving to be more useful

  What is the minimum number of migrations to get optimal
performance (if cost of migration and preemption is ignored)

  What is the best performance we can get from a one-task-per-core
migration scheme

Task Splitting

●  Most tasks are statically allocated, N-1 are split between
processors (for N CPUs)

●  One task splitting scheme for EDF scheduling has a task
split (C, D, T) so that first part has C1=D1, C1<C

●  The second part (C-C1, D-D1, T) then has maximum
time to execute on second processor

●  Often 100% utilisation is achievable (when overheads
are ignored)

–  But overheads are potentially very low
●  General performance is very good

●  Equivalent scheme for Fixed Pri has been analysed

Open Issues

  As we move to many-cores, the thread/task is no longer the
right abstraction on which to partition work-flow

  So concurrency within tasks must be addressed

  Still no effective resource control protocol for multi-core
platforms (for partitioned or global allocation)

  On a multi-core, WCET analysis, task scheduling analysis
and NoC analysis must be dealt with holistically

  Mixed criticality then adds to the fun

